Infection control practices among undergraduate dental students and interns at Riyadh Elm University

Dr. Sultan Binalrimal

Abstract

Aim: Dental students have increasing patient contact during their education and clinical years, putting them at high risk of cross-infection; therefore, the purpose of this study was to determine the level of infection control practices among dental students and interns at Riyadh Elm University, Riyadh, Saudi Arabia.

Methods: Total of 400 questionnaires were distributed among interns and clinical students at Riyadh Elm University. The questionnaire comprised 32 items assessing infection control practices, and the data were tabulated and analyzed by SPSS to produce descriptive statistics.

Results: Three hundred nine questionnaires were answered (response rate 77%). The implementation of different infection control measures was good to excellent, except for hepatitis B vaccination and wearing eye protection: only (76%) of males and (83%) of females were vaccinated against HBV, and only (30%) of males and (26%) of females always wore protective glasses.

Conclusion: Compared to previous studies, an increased awareness regarding infection control practices among dental students and interns was noticeable. However, greater emphasis on the importance of infection control, especially compliance with HBV vaccination and wearing protective eyewear, is necessary.

Keywords: Cross-infection, infection control, dental students, dental interns

Introduction

Dental health care workers (DHCW) are at a high risk of cross-infection through occupational exposure, such as needlestick and sharp instrument injuries (NSIs), mucocutaneous contamination, bites, conjunctivitis and mechanical trauma. The eyes are at particular risk from floating particles, which are considered serious hazards for DHCW, because they can transmit various microorganisms, e.g., cytomegalovirus, Mycobacterium tuberculosis, hepatitis B and hepatitis C viruses (HBV and HCV), Herpes simplex virus type 1, human immunodeficiency virus (HIV), streptococci, transmissible spongiform encephalopathies (including variant CJD), methicillin-resistant Staphylococcus aureus (MRSA), and severe acute respiratory syndrome (SARS) virus transmitted through direct and indirect contact [1-17].

The majority of infections are subclinical and almost 80% of all HBV infections are undiagnosed. Therefore, DHCW are at risk every day, because at normal working distances, there is no zone of safety for the risk of cross-infection. The danger is enhanced by the fact that some hazardous microorganisms remain in the air for up to 30 minutes after cavity excavation, and the fact that most human microbial pathogens have been isolated from oral secretions [7, 8, 18-20].

In 1946, Humphrey [21] described how three dental staff developed different infections including syphilis, diphtheria and actinomycosis during the treatment of infected patients. The protection of health workers became imperative, especially with the rise of of the AIDS epidemic in the 1980s [22].

Routine infection control procedures and recommendations have been available since the 1970s, but were neglected and ignored even by highly educated groups. In 1996, the US Centers for Disease Control and Prevention (CDC) adopted the term “standard precautions” to generate broader understanding and awareness of prevention and transmission of infection. In 2003, the CDC published “Guidelines for Infection Control in Dental Health-Care Settings”, which included standard precautions to ensure safe working environments and prevent
Although the CDC published "Summary of Infection Prevention Practices in Dental Settings: Basic Expectations for Safe Care" [22, 23-25], the emphasis placed on making dental healthcare workers (DHCW) aware of the risk of cross-infection and the recommended practices to control infection transmission, the percentage of DHCW who adhered to those practices was below expectations [1, 2, 4, 26-39].

Despite the emphasis that was placed on making DHCW aware of the risk of cross-infection, the recommended practices to control infection transmission, the percentage of DHCW who adhered to those practices was below expectations [1, 2, 4, 26-39]. Even at dental schools, dental students did not comply with infection control practices very well [13, 32, 35, 48-52]. Because dental students have increasing patient contact during their education and clinical years, they are at massive risk of cross-infection. Therefore, the aim of this study was to determine the level of compliance with infection control practices among dental students and interns at Riyadh Elm University, Riyadh, Saudi Arabia.

Materials and methods

The study was approved by the Review Board and Ethics Committee of Riyadh Elm University. A total of 400 questionnaires were distributed among clinical students and interns at Riyadh Elm University, Riyadh, Saudi Arabia. The questionnaire was designed to cover different aspects of infection control practices in dental clinics including: (1) aseptic techniques, (2) patient screening and evaluation, (3) personal protection, (4) instrument sterilization, (5) immunization against hepatitis B virus, (6) surface disinfection, and (7) equipment asepsis. An informed consent was included in the questionnaire design and required to be signed by every participant. The questionnaire comprised 32 items assessing infection control practices among undergraduate dental students and interns at Riyadh Elm University. Out of 400 questionnaires sent, 309 forms were filled out and returned. Forty-two of the respondents were interns (21 female and 21 male), while 267 forms were received from both male and female clinical students (96 4th-year students, 85 5th-year students, 86 6th-year students). The results obtained from respondents were tabulated and analyzed using the Statistical Package for the Social Sciences, version 24 (SPSS Inc. Chicago, IL USA).

Results

309 questionnaires were answered by clinical dental students and interns from Riyadh Elm University. The distribution of respondents from male and female 4th-, 5th-, and 6th-year students and interns is shown in Table 1. The level of implementation of basic applied infection control measures was found to be good to excellent, except for HBV vaccine coverage and wearing protective eyewear. The results showed that only 76% of males and 83% of females had HBV vaccination, and only (30%) of males and (26%) of females always wore protective eyewear (Table 2A and 2B).

A majority of dental students and interns complied well with different infection control measures during the treatment of patients and between patients, but there is still a need to raise their awareness and improve their attitude regarding infection control practices. The infection control practices followed by dental students and interns during the treatment of patients and between patients are shown in Table 3.

Discussion

Infection control is a dynamic and ever-changing discipline. Standard isolation precautions are designed to reduce the risk of acquiring occupational infections from both known and unknown sources in healthcare settings. Awareness of and compliance with these recommendations are crucial for the prevention of infections among healthcare workers (HCW), including dental healthcare professionals. The recrudescence of diseases such as HIV, tuberculosis, hepatitis B and C, and other maladies that were on the decline have made it essential that strict sterilization be maintained. The results of this study showed that the implementation of different infection control measures was good to excellent, except for hepatitis B vaccination and wearing eye protection. Saudi Arabia was one of the HBV-endemic countries with an overall prevalence of 8.3%- The infection was mostly spread through horizontal transmission in early life. Over the years, there has been an enormous decrease in HBV incidence in Saudi Arabia, and the prevalence rate in 2009 was found to be 1.31% which places Saudi Arabia among the countries with the lowest prevalence rate of HBV worldwide [12-17]. Unfortunately, previous studies reported that HCW in Saudi Arabia showed low compliance with hepatitis B vaccination, and it became mandatory to structure educational programs to raise the awareness and enhance health-care workers’ compliance with HBV vaccination [27, 38, 39]. It is noteworthy that HBV vaccination compliance was also below expectations among HCW in Brazil, Serbia, Libya, Ethiopia, China and India [10, 11, 25, 27-29, 36, 37, 43].

In previous studies investigating dental students’ and interns’ knowledge of, attitude toward and compliance with HBV vaccination among private and governmental dental schools in Saudi Arabia, their attitude was positive regarding infection control protocols, but they unfortunately lacked compliance with HBV vaccination; greater emphasis on the importance of immunization and vaccine coverage was needed, which was in contrast to the results of our study [34, 38, 46-51].

The results of this study demonstrate a need to further emphasize eye protection. The importance of protective eyewear was found to be in the interest of both dentist and patient due to the hazards associated with aerosols and floating debris. The use of eye protection with side shields, and regular monitoring of its structural integrity, reduces the risk of conjunctivitis, eye damage or even complete loss of vision [8].

The use of protective eyewear by dental students, interns and dentists in Saudi Arabia was found to be low in previous studies, which also contrasts with the results of our study [13, 22, 44, 46-50]. In addition, the low compliance with eye protection was reported among DHCW and students in Lebanon, Morocco, India and China [31, 36, 37, 41, 43]. It is the ethical obligation of every health care worker to safeguard themselves and their patients from cross-infection. Because the community expects zero risk of infection transmission from health care providers, a novel, more effective approach is needed to raise the awareness of the importance of vaccine coverage, protective eyewear and adherence to infection control protocols.
Conclusion
Dental students tend to practice infection control measures they acquired during their clinical practice, and they are the future dental professionals who will provide oral healthcare to the population. Therefore, it is the responsibility of every academic institution to facilitate an appropriate preclinical immunization program, provide infection control training to protect students and patients from cross-infection, and educate the future healthcare professionals about safe work practices. The results of this study indicated increased awareness among concerned dental students and interns at Riyadh Elm University towards the implementation of effective infection control measures. Despite the increase awareness, more emphasis on the importance of compliance with HBV vaccination and the adherence to protective eyewear is needed.

References

Table 1: Distribution of respondents in the college to 4th year, 5th year, 6th year students and interns both male and female.

<table>
<thead>
<tr>
<th></th>
<th>4th year</th>
<th>5th year</th>
<th>6th year</th>
<th>Intern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>46</td>
<td>33</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50</td>
<td>53</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td>86</td>
<td>42</td>
<td>309</td>
</tr>
</tbody>
</table>

Table 2A: Level of implementation of basic infection control measures at the university dental school.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Always</th>
<th>Sometimes</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (N=155)</td>
<td>F (N=154)</td>
<td>M (N=155)</td>
</tr>
<tr>
<td>Hand disinfection</td>
<td>97%</td>
<td>91%</td>
<td>3%</td>
</tr>
<tr>
<td>Asking about medical history</td>
<td>99%</td>
<td>98%</td>
<td>1%</td>
</tr>
<tr>
<td>Use of special container for disposal of sharp objects</td>
<td>91%</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>Vaccination for hepatitis B</td>
<td>76%</td>
<td>83%</td>
<td>24%</td>
</tr>
<tr>
<td>Wearing a gown</td>
<td>98%</td>
<td>97%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Table 2B: Level of implementation of basic infection control measures at the university dental school.

<table>
<thead>
<tr>
<th>Clinical disinfection</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (N=155)</td>
<td>F (N=154)</td>
</tr>
<tr>
<td>Dental chair</td>
<td>96%</td>
<td>97%</td>
</tr>
<tr>
<td>Operator’s chair</td>
<td>67%</td>
<td>77%</td>
</tr>
<tr>
<td>Light handles</td>
<td>88%</td>
<td>95%</td>
</tr>
<tr>
<td>Spittoon</td>
<td>87%</td>
<td>95%</td>
</tr>
<tr>
<td>AW syringe</td>
<td>87%</td>
<td>86%</td>
</tr>
<tr>
<td>Change saliva ejector</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Change hand piece</td>
<td>97%</td>
<td>99%</td>
</tr>
<tr>
<td>Change hand instruments</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>Change burs</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td>Use of rubber dam</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Mouthwash tablet</td>
<td>75%</td>
<td>35%</td>
</tr>
<tr>
<td>Disinfect impressions</td>
<td>86%</td>
<td>87%</td>
</tr>
<tr>
<td>Prosthesis disinfection</td>
<td>81%</td>
<td>67%</td>
</tr>
<tr>
<td>Fallon instrument</td>
<td>71%</td>
<td>53%</td>
</tr>
<tr>
<td>Face mask change between patients</td>
<td>97%</td>
<td>98%</td>
</tr>
<tr>
<td>Glove change after each patient</td>
<td>100%</td>
<td>99%</td>
</tr>
</tbody>
</table>
2014; 5(7):920-923.


43. Singh A, Purohit B. Knowledge, Attitude and Practice towards Infection Control Measures and it’s Correlation among Dental Students in Bhopal city, Central India. International Journal of Infection Control. 2011, 7(1).

44. Alshiddi IF. Attitude and awareness of dental students and interns toward infection control measures in prosthodontic clinics. Dental, Oral and Craniofacial Research. 2015, 1(4).


