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Abstract 
The current understanding of pain, particularly postoperative pain, integrates both physiological and 

psychological dimensions, as highlighted by the IASP's widely accepted definition. Despite advances in 

clinical practices, postoperative pain remains highly variable, influenced by numerous factors including 

individual pain thresholds, procedural techniques, and preoperative conditions. Recent research in neural 

oscillations and EEG technologies has provided valuable insight into brain activity related to pain 

perception. Notably, alpha wave activity, particularly oscillations below 9 Hz, has shown promise as a 

predictive biomarker for severe postoperative pain. This finding opens avenues for proactive pain 

management strategies. 

EEG, especially in its portable and mobile forms, has become a pivotal non-invasive modality for 

assessing neural activity in real-world and clinical settings. Through time-frequency analysis and 

correction techniques like dB conversion, EEG data offer a robust means to study cognitive and sensory 

processes, including pain perception. The correlation between alpha oscillations and pain sensitivity 

underscores the brain’s role in shaping pain experiences and highlights the potential of EEG-based tools 

in predicting and managing postoperative pain. As portable EEG technologies evolve, their integration 

into clinical workflows could enable personalized pain interventions, reducing the risk of chronic pain 

development and improving patient outcomes. 
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Introduction 

Pain is a multifaceted sensory and emotional phenomenon characterized by significant inter-

individual variability. Notably, the perception of pain is intimately associated with neural 

oscillatory activity, which is essential for the coordination and integration of functional brain 

networks [1]. A substantial body of research on both acute and chronic pain, utilizing 

Electroencephalography (EEG) and Magneto Encephalography (MEG), has underscored the 

significant involvement of neural oscillations across theta, alpha, beta, and gamma frequency 

bands in shaping pain perception. However, the specificity of this association remains a 

subject of debate. Broadly, the link between pain perception and neural oscillatory activity can 

be categorized into three principal dimensions [2]. 
 First, nociceptive stimuli elicit marked alterations in neural oscillatory activity across the 

theta, alpha, beta, and gamma frequency bands, with the amplitude of certain oscillatory 

changes showing a strong correlation with the subjective intensity of pain perception. Second, 

pre-stimulus neural oscillatory patterns have been found to predict the perceived pain severity 

elicited by subsequent nociceptive input. Third, dysregulated neural oscillations are commonly 

recordered in individuals with chronic pain conditions [3]. 

 

Pain 

The prevailing definition of pain, formulated by the International Association for the Study of 

Pain (IASP) as 'an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage,' was proposed by the 

Subcommittee on Taxonomy and officially adopted by the IASP Council in 1979.  
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This definition has gained widespread acceptance among 

clinicians and pain researchers and has been endorsed by 

numerous professional, governmental, and non-governmental 

organizations, including the World Health Organization [4]. 

 

Postoperative pain prevalence and severity 

The reported occurrence of postoperative pain within the 

initial 24 to 48 hours following surgery varies widely, ranging 

from 3% to 69.3% [5]. While some studies have documented 

mild to moderate postoperative pain, others have reported 

moderate to severe intensity. Additionally, several 

investigations noted the occurrence of severe pain within 12 

to 24 hours after the procedure. Postoperative discomfort 

generally persists for 24 to 48 hours; however, in certain 

cases, patients experience pain extending for 3 to 9 days 

following root canal therapy. The observed variability in 

findings may be attributed to differences in the criteria used 

for pain assessment, variations in the materials and techniques 

employed during root canal procedures, and the frequent 

omission of preoperative pain as a contributing factor [6].  

 

Neural Oscillations 
Brain rhythms, or neural oscillations, denote the rhythmic 

fluctuations in neural population activity as measured by local 

field potentials (LFPs), electroencephalography (EEG), or 

magnetoencephalography (MEG). These oscillations are 

typically observed within the 1-100 Hz frequency range and 

arise from the dynamic balance between excitatory and 

inhibitory neuronal processes, resulting in the periodic 

synchronization of action potentials. Moreover, functional 

magnetic resonance imaging (fMRI) has identified infraslow 

brain activity fluctuations occurring at frequencies below 0.1 

Hz [7].  

Neural activity can exhibit synchronization at any frequency, 

occurring both within localized brain regions and across 

distributed networks [8]. Brain oscillations have been related 

to a wide range of perceptual, cognitive, and behavioral 

processes. Consequently, interpretations of their functional 

roles have differed considerably across experimental 

paradigms and disciplinary perspectives. More recently, 

however, these diverse viewpoints have been integrated 

within a cohesive physiological framework, suggesting that 

brain oscillations play a mechanistic function in dynamically 

directing the flow of information within neural networks [9]. 

This conceptual framework is grounded in converging 

anatomical and functional evidence from both animal models 

and human studies. Anatomical pathways within the visual 

system are clearly delineated into feed forward (bottom-up) 

and feedback (top-down) circuits [10].  

This anatomical differentiation is mirrored in the laminar 

distribution of feed forward and feedback projections within 

the cortex. Feed forward connections generally originate from 

supragranular layers and terminate in layer IV, while 

feedback pathways predominantly arise from infragranular 

layers and project to cortical layers excluding layer IV. 

Moreover, this asymmetrical structural organization 

corresponds to a similarly non-uniform pattern of neural 

oscillations across cortical layers. Empirical studies have 

demonstrated that alpha and beta band oscillations (8-29 Hz) 

are more pronounced in infragranular layers, whereas gamma 

band activity (~30-100 Hz) is typically more prominent in the 

supragranular layers [11]. 

Given the previously described laminar organization of 

cortical connections, a functional association has been 

proposed linking feed forward signaling with gamma-band 

oscillations and feedback signaling with alpha/beta-band 

activity. This hypothesis has been supported by recent 

empirical evidence. A study employing magneto-

encephalography (MEG) to examine human visual cortical 

areas utilized measures of directed connectivity, such as 

Granger causality, to characterize information flow. The 

findings revealed stronger gamma-band connectivity in the 

feed forward direction from lower to higher-order visual areas 

while feedback connectivity, from higher to lower-order 

areas, was predominantly observed in the alpha and beta 

frequency ranges [12]. 

 

EEG 
EEG is a noninvasive neuroimaging method that records the 

brain’s electrical activity through electrodes positioned on the 

scalp [13]. EEG represents a signal pattern derived from the 

amplification and recording of spontaneous brain-generated 

bioelectrical potentials at the scalp. These potentials reflect 

large-scale neural activity across the cortical surface and are 

typically measured by means of noninvasive electrodes placed 

on the scalp. The electrodes detect rhythmic and endogenous 

electrical discharges produced by synchronized activity within 

populations of neurons [14, 15]. 

 
EEG waveform classification 

EEG signal frequency, expressed in Hertz (Hz), denotes the 

number of waveform cycles occurring per unit of time. EEG 

activity is traditionally categorized into five primary 

frequency bands: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-

13 Hz), Beta (13-30 Hz), and Gamma (> 30 Hz). Delta waves 

are characteristic of deep sleep and slow-wave brain activity; 

Theta waves are typically observed during states of relaxation 

and meditation; Alpha waves are most prominent with closed 

eyes and a relaxed but alert mental state; Beta waves are 

related to active cognitive processing and heightened 

attentional demands and Gamma waves are related with 

higher-order cognitive functions and multisensory integration. 

EEG channels are systematically labeled based on their 

anatomical placement relative to the midline and the anterior-

posterior axis of the scalp. These channels enable the 

assessment of electrical brain activity across different cortical 

regions, providing valuable insights into cognitive functions 

as attention, memory, and emotional processing [16, 17]. 

 

Alpha Activity of EEG  

A reduction in alpha activity, particularly within the parieto-

occipital regions, has been the most frequently reported 

alteration in EEG findings [18]. 

However, some researchers have documented conflicting 

results. For instance, Le Pera et al. observed an elevation in 

alpha activity over the parietal regions, Bobiloni et al. noted 

elevated activity in the frontal area contralateral to the site of 

stimulation, and Martel et al. reported increased alpha activity 

in the prefrontal region ipsilateral to the stimulation [19]. 

Alpha oscillations in EEG have attracted significant attention 

due to their proposed involvement in various cognitive, 

sensorimotor, emotional, and physiological processes. Despite 

this interest, there remains a lack of consensus regarding the 

precise functional significance of alpha activity, as well as the 

most appropriate metrics for its characterization. 

Terminological ambiguities further complicate interpretation; 

for example, the phrase ‘alpha rhythm is activated’ is unclear, 

as it does not specify whether this denotes fluctuation in 

amplitude. Similar uncertainty arises when attempting to 

quantify terms such as ‘prominent rhythm,’ ‘organized EEG,’ 
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‘flat EEG,’ or ‘regular oscillations,’ highlighting the need for 

more standardized definitions and measurement criteria [20]. 

 

Alpha waves role in prediction the postoperative pain  

The study demonstrated a robust association between 

patients’ alpha brain wave activity and their postoperative 

pain responses. Specifically, individuals exhibiting 

preoperative alpha oscillations below 9 Hz were significantly 

more susceptible to experiencing acute postoperative pain. 

Remarkably, the preoperative alpha frequency was able to 

predict with 100% accuracy which patients would report a 

postoperative pain score of seven or more on a ten-point scale 
[21]. 

Dr. Ali Mazaheri, senior author of the study and a researcher 

at the Centre for Human Brain Health and the School of 

Psychology at the University of Birmingham, emphasized that 

while pain is a complex and subjective experience, alpha 

oscillations appear to serve as a reliable biomarker for 

predicting the severity of an individual's pain perception [21]. 

This provides clinicians with a potentially valuable biomarker 

for anticipating and mitigating pain before it escalates into a 

severe or chronic condition, rather than addressing it only 

after it has become established [21]. 

 

Electroencephalography’s biophysics and measurement 

EEG has become a standard non-invasive tool to track and 

analyzing neural electrical activity in the human brain [22]. 

EEG has broad applications across multiple domains, 

including the diagnosis of neurological conditions, sleep 

disorders, focal brain abnormalities, and functional brain 

mapping. The development of advanced EEG technologies 

has significantly transformed the field by facilitating real-time 

monitoring of brain activity [23]. To improve accessibility and 

address the limitations related to cost and limited adaptability 

of conventional EEG systems, a new class of portable devices 

referred to as mobile-EEG has been developed [24]. The 

emergence of these mobile systems has enabled more 

practical and efficient real-time monitoring of neural activity 
[25]. 

 

Portable EEG Devices 

Portable EEG technology (PEEGT) typically provides a 

wireless, ergonomic, cost-effective, and non-invasive solution 

for monitoring brain activity, making it accessible to both 

researchers and general users interested in exploring the 

neural correlates of behavior and cognitive processes. 

Increasingly, PEEGT is being adopted as a research tool 

within the field of education, suggesting its potential 

relevance for advancing educational research. Nevertheless, 

this proposition requires further validation through practical 

implementation and, more importantly, through the 

accumulation of robust empirical evidence [26]. 

In recent years, the use of mobile and portable devices 

capable of monitoring various aspects of daily activity has 

seen a marked increase. In particular, the demand for 

brainwave monitoring beyond clinical settings has highlighted 

the need for affordable, portable, and wearable EEG systems. 

Mobile Brain/Body Imaging (MoBI) technology has been 

developed to meet this demand by enabling the simultaneous 

recording of brain activity, bodily dynamics, and both 

exogenous and endogenous events, thereby enabling a deeper 

insight of brain function in naturalistic environments. 

Although portable EEG systems are primarily utilized for 

extended-duration signal recording, they are also capable of 

functioning as real-time monitoring platforms, including 

remote controlled or remotely observed configurations [27].  

These devices are frequently integrated with Brain Computer 

Interface (BCI) systems that utilize real-time signal 

processing algorithms to visualize the dynamic patterns of 

brainwave activity. Typically, such systems capture raw EEG 

signals associated with motor imagery from various cortical 

regions, including the frontal, parietal, temporal, and occipital 

lobes. The integration of a head-mounted display enables the 

development of autonomous EEG-based BCI systems, which 

have been successfully demonstrated in applications such as 

three dimensional spatial navigation and visual field 

evaluation [28]. The emergence of user-friendly, wearable 

EEG/BCI technologies eliminating the need for traditional 

gel-based and cumbersome setups has catalyzed a growing 

trend toward brain-driven interaction with external software 

and hardware systems, as well as the widespread acquisition 

of brain and cognitive health data in real-world environments 
[29]. 

 

Time-frequency analysis (TFA) of electrophysiological 

data 

Since the inception of EEG, the investigation of rhythmic 

neural activity commonly referred to as neural oscillations has 

remained a fundamental focus in neuroscience. Oscillatory 

activity across a range of frequencies has been implicated in 

nearly every domain of cognition, including perception, 

attention, and memory processes [30]. 

 Techniques for detecting narrowband oscillations commonly 

involve transforming neural signals into the frequency or 

time-frequency domain, wherein oscillatory activity is 

identified by spectral peaks or localized power increases 

within the time frequency representation. Notably, neural data 

in these domains typically exhibit a 1/f-like power spectrum, 

characterized by a decrease in amplitude and consequently 

power as frequency increases, in accordance with a power law 

distribution. This spectral property is thought to reflect 

irregular, non-periodic neuronal or population-level firing, 

which contrasts with the structured, rhythmic activity that 

defines true neural oscillations [31]. 

Although broadband activity arising from non-oscillatory 

sources is commonly labeled as 1/f 'noise,' accumulating 

evidence suggests that it may carry functional relevance for 

behavioral performance [32]. Throughout this manuscript, we 

will use the terms '1/f activity' and '1/f noise' interchangeably 

to denote broadband neural activity. This terminology choice 

reflects the convention in studies focused on narrowband 

oscillatory dynamics, where 1/f components are generally not 

the primary focus. In fact, in such analyses, 1/f noise is 

typically accounted for either in the frequency or time 

frequency domain to prevent it from confounding narrowband 

power estimates, masking genuine differences in oscillatory 

activity across frequency bands, or producing spurious effects 
[33, 34].  

As previously discussed, a common approach to detecting 

narrowband neural phenomena involves transforming 

electrophysiological signals into the time frequency domain a 

technique that has gained considerable traction over the past 

two decades. This analytic method enables the investigation 

of temporal fluctuations in spectral content, such as changes 

occurring before and after stimulus presentation. In studies 

employing this approach, a widely used strategy for 

addressing the ubiquitous 1/f power distribution involves 

baseline correction of raw power values (typically expressed 

in μV²). This is achieved by dividing each time point by the 

average power within a predefined baseline period often 
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preceding the stimulus at each frequency. The resulting 

normalized values are subsequently converted into decibel 

(dB) units by applying a base-10 logarithmic transformation 

and multiplying by 10These steps are summarized by the 

following formula [35] 

 

 
 

In this context, t represents the time point of interest, and f 

denotes a specific frequency. The widespread use of decibel 

(dB) conversion as a baseline correction method is 

exemplified by its implementation as the default option in the 

newtimef() function of the widely used EEGLAB toolbox [36]. 

As previously noted, applying dB conversion to time 

frequency decomposed neural data involves two nonlinear 

operations division by a baseline spectrum followed by 

logarithmic transformation. This process is mathematically 

equivalent to first applying a logarithmic transformation to the 

power values and then subtracting the corresponding baseline 

values. The rationale for the log-transformation lies in the 

inherent positive skew of power distributions; converting 

these values to a logarithmic scale produces more 

symmetrical, approximately normal distributions. Such 

distributional properties are advantageous for statistical 

analyses aimed at testing hypotheses concerning changes in 

power as a function of experimental variables [36]. 
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