

ISSN Print: 2394-7489
 ISSN Online: 2394-7497
 Impact Factor (RJIF): 7.85
 IJADS 2026; 12(1): 85-88
 © 2026 IJADS
www.oraljournal.com
 Received: 11-10-2025
 Accepted: 15-11-2025

Haeun Kim
 Master of Sciences Student, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

Rosa Isela Sanchez Najera
 Professor, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

Fanny Lopez Martinez
 Professor, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

Idalia Rodriguez Delgado
 Professor, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

Jorge Jaime Flores Treviño
 Professor, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

Leticia Tiburcio Morteo
 Professor, Facultad de Odontología, Universidad Veracruzana, Veracruz, Mexico

Rosa Elena Ochoa Martínez
 Professor, Facultad de Odontología, Universidad Veracruzana, Veracruz, Mexico

Carolina Bocard Menchaca
 Dentistry Student, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

Dr. Juan Manuel Solis Soto
 Professor, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

Corresponding Author:
Dr. Juan Manuel Solis Soto
 Professor, Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460 ZIP, Mexico

The evolution of dental adhesives: A critical review of the evidence from 4th to 8th generation systems

Haeun Kim, Rosa Isela Sanchez Najera, Fanny Lopez Martinez, Idalia Rodriguez Delgado, Jorge Jaime Flores Treviño, Leticia Tiburcio Morteo, Rosa Elena Ochoa Martínez, Carolina Bocard Menchaca and Juan Manuel Solis Soto

DOI: <https://www.doi.org/10.22271/oral.2026.v12.i1b.2328>

Abstract

Introduction: Adhesive systems determine the longevity of restorations and the costs of retreatment; their selection and technique influence microleakage and sensitivity.

Objective: To analyze recent literature on 4th, 5th, 6th, 7th, and 8th generation bonding agents, describing their composition, representative brands, mechanism of action, and clinical evidence.

Methodology: Articles were searched in databases such as PubMed, Scopus, Google Scholar, using keywords: Dental Bonding, Etching, Composite Resins, Photopolymerization, dental adhesive, universal adhesive, 4th-8th generation, bond strength; clinical trial.

Results: 4th (total-etch, 3 steps): high adhesion and control, technique-sensitive. 5th (total-etch, 1 bottle): faster, but more hydrophilic; requires rigorous evaporation. 6th (self-etch 2 steps, 10-MDP): MDP-Ca chemical bond and consistent seal in dentin; selective etching improves enamel. 7th (all-in-one): maximum simplicity, but greater permeability; useful with active rubbing, multiple layers, and good aeration. 8th (universal multimode): favorable performance in NCCLs; possible need for activator with dual/self-curing materials; optimal with selective enamel etching and active application.

Conclusion: Universal adhesives (8th) offer the best versatility when applied with active rubbing, solvent evaporation, and selective etching; 2-step self-etch adhesives (6th) are highly predictable on dentin; 3-step adhesives (4th) remain the benchmark when durability is prioritized. The choice must be individualized according to the substrate, isolation, and light-curing parameters indicated by the manufacturer.

Keywords: Adhesion, dental adhesion, MDP, adhesion generation

1. Introduction

Dental adhesion is central to the longevity of direct and indirect restorations; marginal failures, sensitivity, and retention depend on the interaction between monomers, solvents, technique, and substrates [1].

Adhesive dentistry has evolved from total-etch systems to universal adhesives that allow for self-etch, selective etch, or total etch modes, seeking durability, especially in dentin [1].

In non-carious cervical lesions (NCCLs), universal adhesives show favorable clinical performance and, in general, comparable results between strategies (etch-and-rinse vs. self-etch) when selective enamel etching and active rubbing of the adhesive are applied [2, 3].

Light curing conditions the degree of conversion and sealing: what matters is the total energy (J/cm²), the spectrum, and the homogeneity of the beam; “fast cures” are only safe if the irradiance and time guarantee it [4, 5].

Comparing adhesives is clinically relevant. Insufficient light curing can increase microleakage and reduce longevity, while shorter protocols would optimize clinical time if they maintain effectiveness. This study aims to synthesize current evidence to guide selection and technique through an analysis of the literature on dental adhesives organized by generations: 4th, 5th, 6th, 7th, and 8th. For each generation, evaluate its composition, commercial brands, mechanism, and disadvantages.

2. Methodology

A comprehensive and systematic literature search was conducted across three major electronic databases-PubMed, Scopus, and Google Scholar-to identify pertinent studies published on the topic. The search strategy utilized Boolean operators (AND, OR, NOT) to combine key terms, including but not limited to: MeSH terms ("Dental Bonding," "Dentin-Bonding Agents," "Etching, Dental," "Composite Resins," "Photopolymerization," "Tooth Cervical Lesions") with keywords in Title/Abstract (dental adhesive, etch-and-rinse, self-etch, universal adhesive, three-step, two-step, one-step, 4th/5th/6th/7th/8th generation, 10-MDP, functional monomer, hybrid layer, smear layer, nano-layering, nanoleakage, microleakage, photopolymerization, radiant exposure, irradiance, curing time, light-curing unit, bond strength, microtensile, shear, clinical trial, randomized controlled trial, *in vitro*, non-carious cervical lesions (NCCLs), indirect restorations, resin cement, postoperative hypersensitivity.

The study selection process adhered to a structured multi-stage framework involving identification, screening, eligibility assessment, and final inclusion. All retrieved articles were rigorously evaluated against predefined methodological and relevance criteria. Furthermore, the quality of included studies was appraised using standardized assessment tools. To ensure the inclusion of high-caliber evidence, the review prioritized articles published in high-impact, peer-reviewed journals.

3. Results

3.1 Fourth-generation bonding agents

3.1.1 Composition

Three main components are used: acid, primer, and adhesive. According to the protocol, each component is packaged individually and applied sequentially. Compared to previous generations, the hybrid layer consists of the surface layer of dentin and enamel infiltrated with resin, which provides high bond strength and dentin sealing with a significant reduction in marginal leakage [6, 7].

3.1.2 Brand names

OptiBond FL (Kerr), Scotchbond Multi-Purpose (3M), All-Bond 3 (Bisco), among others [1, 8].

3.1.3 Light-curing time

H_3PO_4 removes the smear layer and opens the collagen mesh; a hydrophilic primer with solvents (acetone/ethanol/water) rehydrates and infiltrates monomers, and then a hydrophobic adhesive seals, forming a hybrid layer and tags in the enamel. Durability depends on thorough solvent evaporation and moisture control [9, 10].

3.1.4 Disadvantages

Sensitivity to technique (collagen collapse if dried out; excess moisture lowers conversion), postoperative sensitivity, need for rigorous solvent evaporation. Durable if performed correctly [11, 12].

It maintains the best control of each phase and forms stable hybrid layers if moisture is well managed and the solvent evaporates. It is very dependent, but it remains the benchmark when maximum predictability in dentin and enamel is sought.

3.2 Fifth Generation bonding agents

3.2.1 Composition

Single-component total-etch system that combines a hydrophilic primer and adhesive in a single bottle, using 37%

phosphoric acid to condition enamel and dentin [13].

3.2.2 Brand names

Excite F, OptiBond Solo Plus, Prime & Bond NT, iBond Total Etch, among others [14].

3.2.3 Mechanism

Total etching of enamel and dentin followed by a single bottle combining primer+bond; solvents transport monomers to demineralized dentin and require active aeration to avoid residual water/solvent [15, 16]. Its greater hydrophilicity may increase sorption and nanofiltration if evaporation is insufficient [9, 13].

3.2.4 Disadvantages

Greater susceptibility to water degradation and possible interference with chemically cured composites due to acidic pH or inhibition of the amine initiator [17]. There may also be a possible collapse of dentin collagen if it is overdried, preventing proper hybrid layer formation. It was the system with the lowest microleakage [18, 19].

Simplification speeds up the procedure, but the more hydrophilic mixture increases the risk of sorption and nanofiltration if not aerated vigorously. It works well on enamel, and on dentin it depends greatly on moisture control and proper evaporation. Useful when speed is required, assuming discipline in drying.

3.3 Sixth Generation bonding agents

3.3.1 Composition

Two-component self-etching system (conditioner/primer + adhesive) in a single application unit. No etching, rinsing, or drying required, reducing the risk of cross-contamination [19].

3.3.2 Brand names

Clearfil SE Bond 2 and Adper Prompt L-Pop, among others [20].

3.3.3 Mechanism

The acid primer (superficially demineralizes and simultaneously infiltrates, incorporating the smear layer and forming MDP-Ca salts that provide chemical bonding and stability; the second step (hydrophobic adhesive) reduces permeability. Very consistent dentin seal; selective etching is recommended on enamel [21-23].

3.3.4 Disadvantages

Less dependence on dentin hydration, but greater post-polymerization hydrophilicity, which promotes water absorption, limited infiltration, and potential voids [8]. Adhesion is lower if selective etching is not performed; compatibility with dual/self-curing cements is usually better than in 1-step systems, but the manufacturer's activators must be verified [24-26].

Very consistent in dentin due to MDP-Ca chemical anchoring and simultaneous demineralization/infiltration. In enamel, selective etching usually improves margins. Its subsequent permeability may increase if the final adhesive is not sufficiently hydrophobic or is applied thinly.

3.4 Seventh Generation bonding agents

3.4.1 Composition

The seventh generation dental adhesion system represents all-in-one adhesives in a single package. It eliminates the uncertainty of mixing and multi-step processes, which could

lead to technical sensitivity [13, 27].

3.4.2 Brand names

G-Bond/BeautiBond (GC), iBond (Self-Etch) (Kulzer), Adper Prompt L-Pop (3M), among others [28].

3.4.3 Mechanism

All-in-one: acid+primer+adhesive in one bottle; demineralizes and infiltrates at the same time, but the hydrophilic mixture and water in the system can leave a permeable membrane (water trees). Improved with active rubbing, multiple layers, and vigorous evaporation; verify compatibility with dual/self-curing materials [29-31].

3.4.4 Disadvantages

High hydrophilicity after polymerization, susceptibility to hydrolysis, lower infiltration depth, and possible microvoids. Comparative studies observe less microleakage at coronal and apical margins versus 5th generation [29-32]. Simplifies, but requires compensatory strategies such as multiple layers, vigorous aeration, selective etching, and/or dual activator [32, 33].

It is extremely simple, but also extremely hydrophilic. It performs acceptably on slightly sclerotic dentin; on enamel, selective etching helps. It is practical for fast flows, although its durability depends on compensating for its hydrophilic nature.

3.5 8th Generation bonding agents

3.5.1 Composition

Universal all-in-one formulation that integrates etching, primer, and adhesive. Includes nano-fillers (~12 nm) that improve monomer penetration, hybrid layer thickness, and the mechanical properties of the system [34, 35].

3.5.2 Brand names

Futurabond DC (Voco, Germany) is an example with nano-fillers and excellent adhesive strength [36].

3.5.3 Mechanism

Universal multimode (self-etch, selective or total etching) with functional monomers that form MDP-Ca complexes; some incorporate nanofillers and/or silane to improve handling and adhesion to ceramics. There are “no-wait” and radiopaque variants; compatibility with dual cements may require an activator. Their performance depends on active application and etching strategy according to the substrate [37, 38, 39].

3.5.4 Disadvantages

Not specified in current sources, although previous studies mention the risk of increased hydrophilicity after curing. Recent evidence, however, highlights improvements in adhesion and long-term durability [40- 42]. Possible permeability and nanofiltration if solvent does not evaporate; effectiveness of incorporated silane is variable; incompatibility with dual/self-curing materials without activator; for enamel, selective etching improves edges [43, 44]. The best balance between performance and simplicity because they allow you to work in multimode: self-etch on dentin, selective etching on enamel, and total-etch when greater micro-retention is desired.

4. Conclusion

Universal systems offer the best combination of versatility

and results, followed by 6th generation systems. 4th generation systems are the benchmark when greater complexity is acceptable. Success depends on technique (rubbing, solvent evaporation, selective enamel etching) and strict compliance with IFU and light-curing energy.

5. Conflict of Interest

Not available.

6. Financial Support

Not available.

References

1. Perdigão J. Current perspectives on dental adhesion: (1) dentin adhesion-not there yet. *Jpn Dent Sci Rev.* 2020;56(1):190-207.
2. Dressano D, Salvador MV, Oliveira MT, Marchi GM, Fronza BM, Hadis M, *et al.* Chemistry of novel and contemporary resin-based dental adhesives. *J Mech Behav Biomed Mater.* 2020;110:103875.
3. Balbinot GS, Celeste RK, Leitune VCB, Collares FM. Impact of economic factors and knowledge translation on public procurement for dental adhesive systems. *Braz Oral Res.* 2022;36:e020.
4. Breschi L, Maravic T, Mazzitelli C, Josic U, Mancuso E, Cadenaro M, *et al.* The evolution of adhesive dentistry: from etch-and-rinse to universal bonding systems. *Dent Mater.* 2025;41(2):141-158.
5. Brkanović S, Sever EK, Vukelja J, Ivica A, Miletic I, Krmek SJ. Comparison of different universal adhesive systems on dentin bond strength. *Materials (Basel).* 2023;16(4):1530.
6. Costa MP, Giacomini MC, Zabeu GS, Mosquim V, Dallavilla GG, Santos PSDS, *et al.* Impact of functional monomers, bioactive particles, and HEMA on adhesive performance of self-etch systems applied to altered dentin. *J Dent.* 2024;151:105379.
7. Hurtado A, Fuentes V, Cura M, Tamayo A, Ceballos L. Long-term *in vitro* adhesive properties of two universal adhesives to dentin. *Materials (Basel).* 2023;16(9):3458.
8. Handa A, Bhullar KK, Batra D, Brar RS, Khanna M, Malhotra S. Clinical performance of various bonding agents in noncarious cervical defects. *J Conserv Dent.* 2023;26(3):271-274.
9. Fang K, Chen K, Shi M, Wang L. Effect of different adhesive systems on dental defects and tooth sensitivity in composite resin restoration: a systematic review and meta-analysis. *Clin Oral Investig.* 2023;27(6):2495-2511.
10. Thalacker C. Dental adhesion with resin composites: a review and clinical tips for best practice. *Br Dent J.* 2022;232(9):615-619.
11. Hardan L, Bourgi R, Cuevas-Suárez CE, Devoto W, Zarow M, Monteiro P, *et al.* Effect of different application modalities on bonding performance to dentin: a systematic review and meta-analysis. *Cells.* 2023;12(1):190.
12. Tayal A, Niyogi A, Adhikari HD, Adhya P, Ghosh A. Effect of One Coat 7 Universal and Tetric N-Bond Universal on resin-zirconia shear bond strength. *J Conserv Dent.* 2021;24(4):336-340.
13. Hardan L, Bourgi R, Kharouf N, Mancino D, Zarow M, Jakubowicz N, *et al.* Bond strength of universal adhesives to dentin: a systematic review and meta-analysis. *Polymers (Basel).* 2021;13(5):814.

14. Jäggi M, Karlin S, Zitzmann NU, Rohr N. Shear bond strength of universal adhesives to human enamel and dentin. *J Esthet Restor Dent.* 2024;36(5):804-812.
15. Peumans M, Vandormael S, De Coster I, De Munck J, Van Meerbeek B. Three-year clinical performance of a universal adhesive in non-carious cervical lesions. *J Adhes Dent.* 2023;25:133-146.
16. Vidal CMP, Teixeira EC, Armstrong SR, Qian F. Adhesion performance of self-curing and light-curing universal adhesives to dental substrates and CAD/CAM materials. *J Adhes Dent.* 2024;26:31-40.
17. Yao C, Ahmed MH, Li X, Nedeljkovic I, Vandooren J, Mercelis B, *et al.* Zinc-calcium-fluoride bioglass-based multifunctional dental adhesive. *ACS Appl Mater Interfaces.* 2020;12(27):30120-30135.
18. Dawoud B, Abou-Auf E, Shaalan O. Twenty-four-month clinical evaluation of cervical restorations using radio-opaque versus conventional universal adhesive. *Sci Rep.* 2025;15(1):5505.
19. Connor C, Gavril D. Predictable bonding of adhesive indirect restorations: factors for success. *Br Dent J.* 2021;231(5):287-293.
20. de Carvalho MA, Lazari-Carvalho PC, Polonio IF, de Souza JB, Magne P. Immediate dentin sealing and flowable resin coating reinforcement. *J Esthet Restor Dent.* 2021;33(1):88-98.
21. Foxton RM. Current perspectives on dental adhesion: (2) operative management of carious dentin using bioactive and adhesive materials. *Jpn Dent Sci Rev.* 2020;56(1):208-215.
22. Freitas PH, André CB, Fronza BM, Giannini M, Rosalen PL, Consani S, *et al.* Doxycycline-doped dental adhesive: physicochemical properties and antibiofilm activity. *J Dent.* 2021;104:103550.
23. Gindri LD, Fröhlich TT, Rosso CR, Rocha RO. Etching time and bonding to primary dentin: systematic review and meta-analysis. *Int J Paediatr Dent.* 2021;31(1):122-130.
24. Alam A, Chowdhury AFMA, Yamauti M, Saikew P, Hoshika S, Carvalho RM, *et al.* Cause-effect relationship of bonding thickness in dentin adhesion. *J Adhes Dent.* 2022;24:291-300.
25. Barkmeier WW, Tsujimoto A, Latta MA, Takamizawa T, Radniecki SM, Garcia-Godoy F. Effect of mold enclosure and chisel design on fatigue bond strength. *Eur J Oral Sci.* 2022;130(3):e12864.
26. David C, Cardoso GC, Isolan CP, Piva E, Moraes RR, Cuevas-Suarez CE. Bond strength of self-adhesive flowable composites: systematic review and meta-analysis. *J Prosthet Dent.* 2022;128(5):876-885.
27. Foley JCS, Weissheimer M, Gaspar CF, Fehrenbach J, Miotti LL, Piva E, Münchow EA. Bonding performance of universal adhesives to enamel: effects of acidic composition. *Dent Mater.* 2025;41(3):272-282.
28. Călinoiu SG, Bîcălesanu C, Florescu A, Stoia DI, Dumitru C, Miculescu M. Interface fracture of 4th-generation versus universal adhesives. *Materials (Basel).* 2023;16(17):5834.
29. Chacón Gahona KB, Morales Bravo BR, Vintimilla Coronel SE, Sarmiento Criollo PF. Evolución y efectividad de sistemas adhesivos de séptima y octava generación. *Rev Cient Odontol (Lima).* 2023;11(4):e178. Spanish.
30. Javed K, Noor N, Nasir MZ, Manzoor MA. Postoperative hypersensitivity: total-etch vs universal adhesives. *Sci Rep.* 2024;14(1):678.
31. Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, Somaraju NP, Mohan A, Ginjupalli K, *et al.* Effect of bonding agents on shear bond strength to dentin. *J Contemp Dent Pract.* 2024;25(3):245-249.
32. Oz FD, Dursun MN, Ergin E. Clinical performance of a “no-wait” universal adhesive in NCCLs. *J Adhes Dent.* 2022;24:313-323.
33. Brümmer N, Klose C, Schleich JT, Maier HJ, Eisenburger M, Stiesch M, Pott PC. Shear bond strength between adhesives and niobium-based implant material. *J Mater Sci Mater Med.* 2024;35(1):65.
34. Tang C, Mercelis B, Ahmed MH, Yoshihara K, Peumans M, Van Meerbeek B. Adhesive performance of universal adhesives and cement combinations. *J Adhes Dent.* 2023;25:241-256.
35. Takano S, Takahashi R, Tabata T, Zeng C, Ikeda M, Shimada Y. Bonding performance of universal adhesives with dual-polymerizing resin cements. *BMC Oral Health.* 2025;25(1):101.
36. Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, *et al.* Bioinspired multifunctional adhesive system for dental restorations. *J Mech Behav Biomed Mater.* 2021;113:104135.
37. Rangareddy MS, Wahed MA, Kumar BS, Karteek BS, Reddy CLC, Agrawal J. Antibacterial activity of antibiotic-incorporated total-etch adhesive. *J Pharm Bioallied Sci.* 2024;16(Suppl 2):S1705-S1710.
38. Vieira AR. Host response to adhesive restorative dental treatment. *Monogr Oral Sci.* 2021;30:128-132.
39. Wang R, Hass V, Wang Y. Machine learning analysis of microtensile bond strength of dental adhesives. *J Dent Res.* 2023;102(9):1022-1030.
40. Xiao Z, Zhao Q, Niu Y, Zhao D. Adhesion advances: from nanomaterials to biomimetic adhesion. *Soft Matter.* 2022;18(18):3447-3464.
41. Yamauchi S, Wang X, Egusa H, Sun J. High-performance dental adhesives containing an ether-based monomer. *J Dent Res.* 2020;99(2):189-195.
42. Rocha AO, Menezes Dos Anjos L, Favoreto MW, Goebel MC, Henriques B, *et al.* Publication trends in clinical trials on universal adhesives. *J Dent.* 2025;161:105965.
43. Yoshikawa T, Arakawa M. Effects of C-factor on dentin bonding using various adhesives. *Niger J Clin Pract.* 2022;25(3):255-260.
44. Ezazi M, Ye Q, Misra A, Tamerler C, Spencer P. Autonomous-strengthening adhesive with hydrolysis resistance. *Molecules.* 2022;27(17):5505.

How to Cite This Article

Kim H, Najera RIS, Martinez FL, Delgado IR, Treviño JJF, Morteo LT, *et al.* The evolution of dental adhesives: A critical review of the evidence from 4th to 8th generation systems. *International Journal of Applied Dental Sciences.* 2026;12(1):85-88.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.