Microorganisms in persistent apical periodontitis: A review

Zenaida Carolina García Castañeda, Hugo Villarreal Garza, Hugo Félix Madla Alanis, Aurora Lucero Reyes, Patricia Limon Huitron, Rosa Isela Sanchez-Najera and Juan Manuel Solis-Soto

Abstract

Introduction: Apical periodontitis is a sequela of endodontic infection, which manifests as a host defense response to the microbial challenge emanating from the root canals. To achieve an optimal outcome, microorganisms must be eliminated or reduced to levels that allow healing of the periapical tissue.

Objective: To analyze the literature on microorganisms, such as Enterococcus faecalis, Fusobacterium nucleatum, Candida albicans, Epstein-Barr, which are important in persistent apical periodontitis.

Methodology: Articles on the subject published through PubMed, SCOPUS and Google Scholar databases were analyzed, with emphasis on the last 5 years. It was performed with the words “Enterococcus faecalis”, “Fusobacterium nucleatum”, “Candida albicans”, “Epstein-Barr”, “Herpesviridae”, “Root canals”, “Persistent apical periodontitis”.

Results: E. faecalis involved in persistent apical periodontitis because of its adaptability to extreme environments, growing in alkaline pH and using periodontal ligament fluids as nutrients. Lysed Fusobacterium nucleatum cells could potentially increase the severity of persistent apical periodontitis. Candida albicans is one of the dominant pathogens in persistent apical periodontitis because of its nuclear protein Msb2. Epstein-Barr virus may be implicated in the pathogenesis of apical periodontitis by direct cytopathic action on infected cells, however, its replication in persistent apical periodontitis is still unclear.

Conclusions: The microbiota of teeth with persistent apical periodontitis, presents a mixed and complex profile, it is important to know the role of these microorganisms, because microbial persistence, seems to be the most important factor in root canal treatment failure.

Keywords: Enterococcus faecalis, Fusobacterium nucleatum, Candida albicans, epstein-barr, herpessviridae, root canals, apical periodontitis

1. Introduction

For a better prognosis of root canal system treatment, an adequate knowledge of the microbial flora of the root, especially the apical portion, is necessary [1]. Apical periodontitis is an inflammatory disease of the periapical tissues caused by bacteria colonizing necrotic root canals [2]. Persistent apical periodontitis is a situation involving an inflammatory and immune response caused mainly by an anaerobic polymicrobial infection of the root canal system [3]. Microorganisms are considered to play the main etiological role in the formation of endodontic diseases [4]. The endodontic microbiota is composed of a subset of microbiota present in the oral cavity, consisting of predominantly anaerobic bacterial species, some fungal species and viruses [5]. Microbial factors in necrotic root canals (e.g., Endotoxin) can spread to the apical tissue, causing and supporting a chronic inflammatory burden. Thus, apical periodontitis is the result of the complex interplay between microbial factors and host defense against invasion of periapical tissues [6]. The complexity and variability of the root canal system, along with the multi-species nature of biofilms, make disinfection of this system extremely challenging [7].

Understanding the formation and progression of apical periodontitis can help increase knowledge of pathogenic mechanisms, improve diagnosis, and provide support for different therapeutic strategies [8].
It is of great importance to recognize the different microorganisms found in the root canal system with persistent apical periodontitis in order to successfully perform conventional endodontic retreatments and thus reduce periapical surgeries. Therefore, the aim of this article is to analyze the literature about microorganisms, such as Enterococcus faecalis, Fusobacterium nucleatum, Candida albicans, Epstein-Barr, which are important in persistent apical periodontitis, particularly their characteristics, biofilm, virulence factors, survival mechanisms, as well as studies that prove this relationship.

2. Materials and Methods

Articles on the subject published through the PubMed, SCOPUS and Google Scholar databases were analyzed, with emphasis on the last 5 years. The quality of the articles was evaluated using PRISMA guidelines, i.e., identification, review, choice and inclusion. The quality of the reviews was assessed using the measurement tool for evaluating systematic reviews (AMSTAR-2) [9]. The search was performed using Boolean logical operators AND, OR and NOT. It was realized with the words “Enterococcus faecalis”, “Candida albicans”, “Herpesviridae”, “Epstein-Barr”, “Fusobacterium nucleatum”, “Root canals”, “Persistent apical periodontitis”.

3. Results & Discussion

3.1 Enterococcus faecalis

3.1.1 Characteristics

Enterococcus faecalis is an aerotolerant gram-positive bacterium that is widely distributed in the natural environment. The most important characteristics of E. faecalis are its high adaptability in adverse environmental conditions and its potential development of antibiotic resistance [10]. It is the most frequent species present in post-treatment disease and plays an important role in persistent periapical infections [11].

3.1.2 Biofilm

Form biofilms with a hard extracellular polymeric matrix; this biofilm can serve as a protective barrier against antibacterial agents [12]. It confers phenotypic antimicrobial tolerance to biofilm-associated bacteria [13].

3.1.3 Virulence factors.

The virulence factors of E. faecalis include bile salt hydrolase, cytolysin toxin, capsular polysaccharides, gelatinase, lipoproteins and other surface-associated LPxTG aggregating substances [14]. E. faecalis can establish extra-root infection by secreting toxins directly through inducing inflammation indirectly, as well as can gain and transfer extra chromosomal elements and coding virulence traits, which help to colonize and compete with other bacteria [15]. In addition, they can protect bacteria from immune detection or phagocytosis, and serve as an effective immune evasion mechanism [16].

3.1.4 Survival mechanisms.

It has an adaptability in root canals due to its abilities to grow with or without oxygen, grow at alkaline pH, survive at temperatures between 10-60 degrees Celsius. To these survival mechanisms, we can also add the ability of E. faecalis to live without nutrients, can survive in the presence of intra-canals drugs, survive high salinity, to acquire resistance to antibiotics, in particular erythromycin and azithromycin, to invade dentinal tubules, to use periodontal ligament fluids as nutrients and to adhere to collagen [17]. It remains viable and proliferate in treated root canals for a long period of time [18].

3.1.5 Studies of Enterococcus faecalis showing relationship with persistent apical periodontitis

E. faecalis is present in the root canals of patients with persistent periapical periodontitis and is believed to be involved in the persistence of periapical lesions due to the difficulty in adequately debriding root canals during root canal preparation and dressing [19]. Enterococcus faecalis is not among the leading causes of primary endodontic infections, but causes one of the most recurrent and persistent forms of chronic apical periodontitis [20]. Enterococcus faecalis is an aerotolerant gram-positive bacterium, which can form biofilms with a hard extracellular polymeric extracellular matrix, as well as gain and transfer extra chromosomal elements and coding virulence traits. In fact, this bacterium can enter a viable state, which consists of an adaptive mechanism when exposed to unfavorable conditions. E. faecalis is present in the root canals of patients with persistent periapical periodontitis and is considered to be the bacterium most related to endodontic treatment failures due to its high adaptability and potential development of antibiotic resistance.

3.2 Fusobacterium nucleatum

3.2.1 Characteristics

It is a gram-negative anaerobic oral commensal [21]. Among its characteristics we can find that it has properties that make it able to escape disinfection measures, ability to form a biofilm, to locate in areas unreachable for root canal instrumentation techniques, synergism and the ability to express survival genes [22].

3.2.2 Biofilm

Biofilm formation by F. nucleatum can provide protection to cells when exposed to alkaline environments. Bacteria growing in biofilms exhibit altered phenotypes and are more resistant to antimicrobial agents and the host immune system. In one study, P. gingivalis was shown to enhance biofilm formation by F. nucleatum by releasing diffusible signaling molecules (autoinducer-2-producing gene luxS) [24].

3.2.3 Virulence factors

Possess virulence factors that allow them to survive in hostile environments by selectively modulating the host immunoinflammatory response. Additional virulence properties associated with F. nucleatum include hemolytic activity and the ability to produce hydrogen sulfide. F. nucleatum is well known for its invasive properties, which may allow it to enter the bloodstream, migrate and cause infections in other parts of the body. Its pathogenicity depends on the degree of anaerobiosis, pH level, availability of exogenous and endogenous nutrients [27].

3.2.4 Survival mechanisms

Can survive and multiply despite death during root canal treatment, lysed cells present in the dentinal tubule or biofilm can act as plasmid or chromosomal DNA donors. Plasmids or smaller peptides called pheromones can impact drug resistance and virulence to other microbes such as Enterococcus faecalis, thereby increasing the pathogenicity of other microorganisms [28]. It also produces poly-gamma-glutamate, which has a role in virulence and survival under
some unfavorable conditions [39].

3.2.5 Studies of *Fusobacterium nucleatum* showing relationship with persistent apical periodontitis.

*Fusobacterium nucleatum* was found to play a determinant role in the pathogenicity of primary endodontic infections [39]. It is very commonly found in bacteriological profile evaluations in the apical root segment of patients with primary apical periodontitis [33] and potentially increase the severity of persistent apical periodontitis [32].

*Fusobacterium nucleatum* is a gram-negative anaerobic oral commensal, biofilm-forming oral commensal that can provide protection to cells when exposed to alkaline environments, possess virulence factors that allow them to survive in hostile environments. It is very commonly found in apical root segment of patients with primary apical periodontitis, in turn could potentially increase the severity of persistent apical periodontitis.

3.3 *Candida albicans*

3.3.1 Characteristics

It is a common member of the human microflora and is an important human opportunistic fungal pathogen [33]. Characteristics of *C. albicans* include the ability to monoinfect, survival in nutrient-poor environments, bacterial coaggregation, dimorphism, adaptation to variable environmental conditions, tissue adherence, production of hydrolytic enzymes, biofilm formation, and modulation of the host immune response [34].

3.3.2 Biofilm

*C. albicans* biofilms are inherently resistant to antifungal drugs, the host immune system and environmental stresses [35]. *C. albicans* in particular, can coexist with multiple bacterial species and are known for their ability to form biofilms with them [36]. One study indicated that different phenotypes of *C. albicans* biofilms cultured on a non-complex surface topography have the potential to differentially tolerate standard endodontic irrigation protocols [37]. As there is also the potential for biofilm interactions between kingdoms, bacteria and yeasts in the root canal, which are likely to complicate infection and require alternative treatment strategies [38].

3.3.3 Virulence factors.

An important virulence attribute is its ability to form biofilms, densely clustered communities of cells attached to a surface [39]. The *C. albicans* membrane protein Msb2 is able to bind and inactivate host defense proteins and antibiotics, such as daptomycin. Production of Msb2 could subsequently provide the same protection to *E. faecalis*, leading to long-term colonization of the root canal [40]. Candida could facilitate the rise of pathogenic microorganisms as it modifies the host defense mechanism [41].

3.3.4 Survival mechanisms

It binds to tooth dentin, forms biofilms and invades dentinal tubules to resist intracanal disinfectants and endodontic treatments [42]. It has the ability to form bilayer biofilm, rich in an extracellular matrix composed of carbohydrates, proteins, phosphorus and hexosamines, which allows good tolerance and growth in nutrient-restricted environments, such as occurs in retreatment of the canal system. In addition, it has been considered tolerant to chemical compounds commonly used in biomechanical instrumentation of infected roots, canals or dressings, such as calcium hydroxide [43].

3.3.5 *Candida albicans* studies showing relationship with persistent apical periodontitis

It has been demonstrated the Prevalence of *Candida albicans* in primary endodontic infections associated with a higher frequency of apical periodontitis in patients with type 2 diabetes mellitus. It is one of the dominant pathogens in periapical lesions associated with persistent apical periodontitis [44, 45].

*Candida albicans* is a human opportunistic fungal pathogen, whose important virulence attribute is its ability to form biofilms which are intrinsically resistant to antifungal drugs, the host immune system and environmental stresses. With a correlation in immunosuppressed patients, being one of the dominant pathogens associated with persistent apical periodontitis.

3.4 Epstein-Barr

3.4.1 Characteristics

Epstein-Barr virus (EBV), a gamma-herpesvirus, latently infects more than 90% of adult humans worldwide [46]. Once Epstein-Barr Virus infects a human being, it can never be eliminated despite antiviral therapy [47]. It is the virus most associated with endodontic disease [48]. The herpesviridae correspond to a DNA virus (linear double helix), with a virion size varying between 120 and 150 nm. The herpesviridae have an icosaheiral capsid, a proteinaceous tegument and a sheath with viral glycoproteins [49].

3.4.2 Virulence factors

Herpesviruses have evolved several indirect mechanisms, for example; inhibition of major histocompatibility complex class I and II expression on the surface of macrophages, induction of proinflammatory cytokine production, evasion of apoptosis, among others, which impair local host defense and increase the aggressiveness of bacterial pathogens resident at the site of inflammation [50]. EBV infection induces the expression of proinflammatory cytokines such as tumor necrosis factor α, interleukin (IL) -1β, IL-8, IL-10, IL-12 and IL-17 [51].

3.4.3 Survival mechanisms

EBV has evasion strategies that it employs to facilitate immune escape during latency [52]. High levels of inflammatory cells that have latent herpesvirus, in combination with a compromised host response in periapical lesions, may create favorable conditions for reactivation [53].

3.4.5 Epstein-Barr studies showing association with persistent apical periodontitis.

It has been frequently detected in apical periodontitis and associated with large lesions and root cysts, both in immunocompetent and immunocompromised patients. It may be implicated in the pathogenesis of apical periodontitis either by direct cytopathic action on infected cells or by virus-induced impairment of host defense, which in turn aids bacterial growth [54]. However, replication of Epstein-Barr Virus in persistent apical periodontitis has not yet been elucidated [55].

Epstein-Barr virus (EBV), a gamma-herpesvirus, latently infects more than 90% of adult humans worldwide, is most associated with endodontic disease. Epstein-Barr virus has been detected in apical periodontitis, large lesions and root cysts. The presence of virus may cause local

"371"
immunosuppression, which favors bacterial growth in the periapical. The replication of Epstein-Barr Virus in persistent apical periodontitis has not yet been elucidated and further studies are needed to verify this.

4. Conclusions

*E. faecalis* is thought to be involved in the persistence of periapical lesions due to its abilities to adapt to extreme environments, grow at alkaline pH, and use periodontal ligament fluids as nutrients. Lysed *Fusobacterium nucleatum* cells could potentially increase the severity of persistent apical periodontitis as they act as chromosomal DNA donors that generate resistance to other microorganisms. *Candida albicans* is one of the dominant pathogens in persistent apical periodontitis because of its membrane protein Msb2 that is able to bind and inactivate host defense proteins and antibiotics. Epstein-Barr virus may be implicated in the pathogenesis of apical periodontitis by direct cytopathic action on infected cells, however, the replication of Epstein-Barr virus in persistent apical periodontitis is still unclear.

5. References

28. Ganesh A, Veronica AK, Ashok R, Varadan P,


