Comparative evaluation of push-out bond strength of endosequence bioceramic sealer hiflow and endoseal MTA with single cone obturation technique

Aamir Javaid, Junaid Mohiudin, Aamir Rashid, Fayaz Ahmad and Riyaz Farooq

DOI: https://doi.org/10.22271/oral.2022.v8.i3b.1591

Abstract
Aim: The study aimed to evaluate the PBS of End sequence bio ceramic sealer hiflow and endoseal MTA with single cone obturation techniques.

Materials and Methods: Twenty extracted single-root human teeth of similar sizes and circular canals were randomly selected and stored in distilled water at 4 °C.

Results: All specimens showed measurable adhesive properties to root dentin. In addition, no premature failure occurred. Overall, the push-out bond strength was the highest in the coronal third and lowest in the apical third. Endosequence bioceramic sealer hiflow specimens displayed statistically higher bond strengths (p=0.0012, 0.51-5.9 MPa). Endoseal MTA showed the lowest bond strengths.

Conclusion: Endosequence bioceramic sealer hiflow Group had a significantly higher PBS value than other Group from the apex. At 5 and 10 mm from the apex, no significant difference in PBS was found among the endosequence bioceramic sealer hiflow and endoseal MTA (P>0.05). The most common failure mode found in all Groups was a mixed failure.

Keywords: push-out bond strength, endodontics, root canal obturation, bioceramic sealer, MTA

1. Introduction
The aim of endodontic therapy is not only to eliminate microorganisms by cleaning and shaping the root canal, but also to ensure that the root canal system will be fluid free and that a single unit can be created by the filling material (cones and sealer) and root dentin walls.

Bond strength of endodontic sealers to dentin is an important property of filling materials because it minimizes the risk of filling detachment from dentin during restorative procedures or the masticatory function [11], ensuring that sealing is maintained and, consequently, clinical success of endodontic treatment. The push-out bond strength test is a well-known evaluation method used in several other similar studies [1-4] with great reliability. Thus, its results can be useful for inferring the interfacial strength and dislocation resistance between different root filling materials and the root dentin.

Using a root canal sealer with gutta-percha (GP) is the most widely accepted obturation technique. The root canal sealer establishes a good connection between the root canal wall and the GP, preventing micro leakage causing re-infection [5, 6]. In recent years, calcium silicate-based sealers (CSBSs) have been widely used in endodontics. CSBSs are biocompatible and bioactive, thanks to their calcium silicate formulation. CSBSs form an apatite layer in contact with tissue and chemically bond to dentin. Micromechanical interlocking between CSBSs and root dentin helps maintain the integrity of the sealer-dentin interface during a function [7, 8].

The push-out of bond strength (PBS) tests are used as a measure of the bond strength of root canal filling materials to the root dentin. PBS results in shear stress at the dentin-cement interface, comparable with the stress in clinical conditions. The ability of the PBS test to evaluate adhesion is superior to other tests, as it creates parallel fractures in the interfacial area of the dentin bond [10]. There are a few studies about the PBS of Endosequence BC Hiflow, Endoseal MTA [7, 11].
Therefore, this study aimed to evaluate the PBS of endosequence Bioceramic sealer hiflow and endoseal MTA with single cone obturation technique.

Materials and Methods
Twenty extracted single-root human teeth of similar sizes and circular canals were randomly selected and stored in distilled water at 4°C. To standardize the working length, a size 15 K-file (Dentsply-Maillefer, Balague, Switzerland) was inserted into the root canal until it could be visualized at the apical foramen. The working length was determined by subtracting 1 mm from this length.

After measurement, the length of all roots was standardized to 13 mm to prevent the introduction of confounders that could contribute to variations in the preparation procedures. All canals were instrumented to the working length to a size #25/0.06 to working length. Irrigation with 0.5 mL 2% chlorhexidine gel was used before each instrument and 1 mL 0.9% saline solution after each instrument. The smear layer was removed with 3 mL 17% EDTA for 3 min. A total of 3 mL saline was used for 3 min as a final rinse. Each canal was dried with paper points.

Obturation procedures were performed using the single gutta-percha cone technique. Using a computer algorithm (http://www.random.org), the 20 roots were randomly assigned to 2 groups for obturation with one of the two sealers: Endosequence bioceramic sealer hiflow and endoseal MTA. On completion of these procedures, the specimens were radiographed at different angles to verify the quality of the filling procedure and presence of bubbles. The specimens were placed in 100% humidity for 7 days to ensure complete setting of the sealer.

Afterwards, each root was sectioned horizontally into eight 1±0.1 mm-thick serial slices by using a low-speed saw with a diamond disk under continuous water irrigation. The root filling of each sample was loaded with a 0.5-mm diameter stainless steel cylindrical plunger. The plunger tip was sized and positioned to touch only the root filling. The load was always applied in an apical-coronal direction to avoid any constriction interference caused by root canal taper during push-out testing. Loading was performed on a universal testing machine (Instron Corporation, Norwood, MA, USA) at a crosshead speed of 0.5 mm/min until debonding occurred. Each cross section was coded and measured for the apical and coronal diameters of the obturated area by using an optical stereomicroscope. A load/time curve was plotted during the compression test using real-time software. To express the bond strength in MPa, the load at failure recorded was divided by the area of the bonded interface.

The normality test of Shapiro-Wilk and Levenes variance homogeneity tests were applied to the data showing normal distribution and homogeneity of variance among the groups. Two-way analysis of variance (ANOVA) and the posthoc Tukey test were used for the data analysis; the independent variables were root canal filling material and root canal third (p<0.05).

Results

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean (SD)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endosequence bioceramic sealer hiflow</td>
<td>3.80±1.90B</td>
</tr>
<tr>
<td>Endoseal MTA</td>
<td>0.25±0.10A</td>
</tr>
</tbody>
</table>

All specimens showed measurable adhesive properties to root dentin. In addition, no premature failure occurred. Overall, the push-out bond strength was the highest in the coronal third and lowest in the apical third. ENDOSEQUENCE BIOCERAMIC SEALER HILOW specimens displayed statistically higher bond strengths (p=0.0012, 0.51-5.9 MPa). Endoseal MTA showed the lowest bond strengths.

The values of the push-out bond strength data in each experimental group are shown in Table 1.

Discussion

Gutta-percha does not bond to root dentin and is used in conjunction with a root canal sealer [1], so the adhesive properties of endodontic sealers are important. It was suggested that, if a material bonds to the root canal walls, it resists dislodgement of the filling [12]. It is also believed that chemical bonding to root dentin improves the pull out bond strength of sealers to root canal walls [13].

In this study, the push-out test was used to test the dentin bond strength of different root canal sealers. It has been suggested that this test provides a better evaluation of bond strength than the conventional shear test because in the pushout test, fracture occurs parallel to the dentin-bonding interface, which makes it a true shear test for parallel-sided samples [14, 15].

During chemo-mechanical preparation, a layer of debris, the smear layer, is formed. Current theories of dentine bonding mechanisms involve either chemical modification of the smear layer and bonding directly to it, or removal of the smear layer and bonding to subjacent tooth structures [14, 16]. Some studies have shown that removal of the smear layer enhances the adhesion of sealers to the root canal wall [17, 18].

The smear layer can act as a reservoir or substrate for microorganisms [19], and can also block the extension of sealer tags into the dentinal tubules, thereby decreasing micromechanical adhesion [18]. In the current study, 17% EDTA was used after instrumentation to remove the smear layer.

In this study, we have selected two different types of endodontic sealers, i.e. Bioceramic sealer (Endosequence BC Sealer HiFlow), MTA-based sealer (Endoseal MTA).

In the present study, Endosequence BC Sealer HiFlow showed the highest bond strength with a statistically significant difference (P = 0.0001). This may be due to its true self-adhesive nature, which forms a chemical bond (through production of hydroxyapatite during setting) with dentine. Moreover, it is hydrophilic, possess low contact angle allowing it to spread easily over the canal walls providing adaptation and good hermetic seal [25]. In an in vitro study done by Ghoneim et al., it was seen that the resistance to vertical fracture of roots obturated with iRoot SP (Bioceramic-based sealer) and Activ GP cones was comparable to that of intact teeth [20]. The Bioceramic cones or Activ GP cones has the capability to absorb water from the tooth environment and expand in the lateral direction only to hermetically seal the root canal [27]. Christopher Delong in his study concluded that Bioceramic sealer showed highest bond strength than MTA plus sealer when used in a single cone technique [28].

This finding might be explained by the fact that in comparison with other CSCs, pozzolan-based materials are associated with a significantly lower Ca-releasing ability and Ca/P ratio of the apatite-like crystalline precipitates [30]. This explanation is supported by the fact that the concentration of available...
ions affects the nucleation and growth of the apatite layer [31]. Moreover, Endo Seal MTA is premixed with non-aqueous but water-miscible carriers and, contrary to powder forms of MTA, uses only the environmental moisture to initiate and complete the setting reaction [29]. These differences might predispose Endo Seal MTA to lower dislodgement resistance.

Figure ABC and D: All specimens showed measurable adhesive properties to root dentin

Conclusion
EndoSequence bioceramic sealer hiflow Group had a significantly higher PBS value than other Group at the apex. At 5 and 10 mm from the apex, no significant difference in PBS was found among the endosequence bioceramic sealer hiflow and Endoseal MTA obturated using two different techniques (P>0.05). The most common failure mode found in all Groups was a mixed failure.

References


